Efficient reverse k-nearest neighbor search in arbitrary metric spaces

  • Authors:
  • Elke Achtert;Christian Böhm;Peer Kröger;Peter Kunath;Alexey Pryakhin;Matthias Renz

  • Affiliations:
  • University of Munich, Munich, Germany;University of Munich, Munich, Germany;University of Munich, Munich, Germany;University of Munich, Munich, Germany;University of Munich, Munich, Germany;University of Munich, Munich, Germany

  • Venue:
  • Proceedings of the 2006 ACM SIGMOD international conference on Management of data
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The reverse k-nearest neighbor (RkNN) problem, i.e. finding all objects in a data set the k-nearest neighbors of which include a specified query object, is a generalization of the reverse 1-nearest neighbor problem which has received increasing attention recently. Many industrial and scientific applications call for solutions of the RkNN problem in arbitrary metric spaces where the data objects are not Euclidean and only a metric distance function is given for specifying object similarity. Usually, these applications need a solution for the generalized problem where the value of k is not known in advance and may change from query to query. However, existing approaches, except one, are designed for the specific R1NN problem. In addition - to the best of our knowledge - all previously proposed methods, especially the one for generalized RkNN search, are only applicable to Euclidean vector data but not for general metric objects. In this paper, we propose the first approach for efficient RkNN search in arbitrary metric spaces where the value of k is specified at query time. Our approach uses the advantages of existing metric index structures but proposes to use conservative and progressive distance approximations in order to filter out true drops and true hits. In particular, we approximate the k-nearest neighbor distance for each data object by upper and lower bounds using two functions of only two parameters each. Thus, our method does not generate any considerable storage overhead. We show in a broad experimental evaluation on real-world data the scalability and the usability of our novel approach.