A novel association algorithm for congestion relief in IEEE 802.11 WLANs

  • Authors:
  • Ozgur Ekici;Abbas Yongacoglu

  • Affiliations:
  • University of Ottawa, Ottawa, Ontario, Canada;University of Ottawa, Ottawa, Ontario, Canada

  • Venue:
  • Proceedings of the 2006 international conference on Wireless communications and mobile computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many wireless local area network (WLAN) performance estimations are done with the assumption of uniformly distributed stations (STAs). In practice, on the contrary STAs are distributed unevenly among access points (APs), causing hot-spots and under utilized APs in a wireless network. Considering a WLAN is made up of multiple APs, having some APs carrying excessive loads (i.e. hot-spots) degrades both the considered APs as well as the overall network performance. The system performance can be improved by associating incoming STAs effectively throughout the network, in a sense to balance the network load evenly between APs and relieve the hot-spot congestion. Currently employed user association method in IEEE 802.11 WLANs considers only the received signal strength of APs at STAs, and associates STAs to the closest (in signal strength sense) AP, ignoring its load and interference value.Novel user association algorithms are required for congestion relief and network performance improvement. In this work, a new distributed association algorithm taking into consideration not only the received signal strength of the APs at STAs but also AP loadings and interference is proposed. A new AP load calculation method acknowledging the interference between STAs and APs is presented. Our simulations demonstrate that the proposed algorithm can improve the overall system throughput performance more than 50% and offers a better load distribution across the network compared to conventional association algorithm.