Graph model selection using maximum likelihood

  • Authors:
  • Ivona Bezáková;Adam Kalai;Rahul Santhanam

  • Affiliations:
  • University of Chicago, Chicago, Illinois;Toyota Technological Institute at Chicago, Chicago, Illinois;Simon Fraser University, Burnaby, British Columbia, Canada

  • Venue:
  • ICML '06 Proceedings of the 23rd international conference on Machine learning
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.