Deterministic annealing for semi-supervised kernel machines

  • Authors:
  • Vikas Sindhwani;S. Sathiya Keerthi;Olivier Chapelle

  • Affiliations:
  • University of Chicago, Chicago, IL;Yahoo! Research, Burbank, CA;MPI for Biological Cybernetics, Tübingen, Germany

  • Venue:
  • ICML '06 Proceedings of the 23rd international conference on Machine learning
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

An intuitive approach to utilizing unlabeled data in kernel-based classification algorithms is to simply treat unknown labels as additional optimization variables. For margin-based loss functions, one can view this approach as attempting to learn low-density separators. However, this is a hard optimization problem to solve in typical semi-supervised settings where unlabeled data is abundant. The popular Transductive SVM algorithm is a label-switching-retraining procedure that is known to be susceptible to local minima. In this paper, we present a global optimization framework for semi-supervised Kernel machines where an easier problem is parametrically deformed to the original hard problem and minimizers are smoothly tracked. Our approach is motivated from deterministic annealing techniques and involves a sequence of convex optimization problems that are exactly and efficiently solved. We present empirical results on several synthetic and real world datasets that demonstrate the effectiveness of our approach.