Block-quantized kernel matrix for fast spectral embedding

  • Authors:
  • Kai Zhang;James T. Kwok

  • Affiliations:
  • The Hong Kong University of Science and Technology, Kowloon, Hong Kong;The Hong Kong University of Science and Technology, Kowloon, Hong Kong

  • Venue:
  • ICML '06 Proceedings of the 23rd international conference on Machine learning
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Eigendecomposition of kernel matrix is an indispensable procedure in many learning and vision tasks. However, the cubic complexity O(N3) is impractical for large problem, where N is the data size. In this paper, we propose an efficient approach to solve the eigendecomposition of the kernel matrix W. The idea is to approximate W with W that is composed of m2 constant blocks. The eigenvectors of W, which can be solved in O(m3) time, is then used to recover the eigenvectors of the original kernel matrix. The complexity of our method is only O(mN + m3), which scales more favorably than state-of-the-art low rank approximation and sampling based approaches (O(m2N + m3)), and the approximation quality can be controlled conveniently. Our method demonstrates encouraging scaling behaviors in experiments of image segmentation (by spectral clustering) and kernel principal component analysis.