A genetic algorithm with a variable-length genotype and embryogeny for microstructured optical fibre design

  • Authors:
  • Steven Manos;Leon Poladian;Peter J. Bentley;Maryanne Large

  • Affiliations:
  • University of Sydney, Australia;University of Sydney, Australia;University College London, London, UK;University of Sydney, Australia

  • Venue:
  • Proceedings of the 8th annual conference on Genetic and evolutionary computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Microstructured optical fibres are a relatively recent advance in fibre technology which guide light by using arrays of air holes which run the length of the fibre. The internal microstructure of optical fibres can be altered to reshape and transform light for use in medical applications, sensing, long distance and local area network high bandwidth communications. Recent progress in the production of polymer fibres allows designs with complex microstructures consisting of hundreds of holes to be manufactured. In this paper we present a generative (embryogenic) representation which can produce symmetric fibre designs with a variable number of holes. The resulting genetic algorithm has the ability to search designs of varying complexity over time, allowing less or more complex designs to be evolved as required. Various aspects of this representation are discussed in light of the supporting genetic algorithm such as as recombination of designs and the conversion of the variable length binary genotype to the phenotype (optical fibre structure). We include some single objective design results for a high-bandwidth optical fibre along with manufactured designs.