Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials

  • Authors:
  • Erich Kaltofen;Zhengfeng Yang;Lihong Zhi

  • Affiliations:
  • Massachusetts Institute of Technology, Cambridge, Massachusetts;Academy of Mathematics and Systems Science, Beijing, China;Academy of Mathematics and Systems Science, Beijing, China

  • Venue:
  • Proceedings of the 2006 international symposium on Symbolic and algebraic computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of computing minimal real or complex deformations to the coefficients in a list of relatively prime real or complex multivariate polynomials such that the deformed polynomials have a greatest common divisor (GCD) of at least a given degree k. In addition, we restrict the deformed coefficients by a given set of linear constraints, thus introducing the linearly constrained approximate GCD problem. We present an algorithm based on a version of the structured total least norm (STLN) method and demonstrate on a diverse set of benchmark polynomials that the algorithm in practice computes globally minimal approximations. As an application of the linearly constrained approximate GCD problem we present an STLN-based method that computes a real or complex polynomial the nearest real or complex polynomial that has a root of multiplicity at least k. We demonstrate that the algorithm in practice computes on the benchmark polynomials given in the literature the known globally optimal nearest singular polynomials. Our algorithms can handle, via randomized preconditioning, the difficult case when the nearest solution to a list of real input polynomials actually has non-real complex coefficients.