Smoothed particle electromagnetics: a mesh-free solver for transients

  • Authors:
  • G. Ala;E. Francomano;A. Tortorici;E. Toscano;F. Viola

  • Affiliations:
  • Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni, Università degli Studi di Palermo, Palermo, Italia;Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo, Palermo, Italia;Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo, Palermo, Italia;Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo, Palermo, Italia;Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni, Università degli Studi di Palermo, Palermo, Italia

  • Venue:
  • Journal of Computational and Applied Mathematics - Special issue: The international conference on computational methods in sciences and engineering 2004
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper an advanced mesh-free particle method for electromagnetic transient analysis, is presented. The aim is to obtain efficient simulations by avoiding the use of a mesh such as in the most popular grid-based numerical methods. The basic idea is to obtain numerical solutions for partial differential equations describing the electromagnetic problem by using a set of particles arbitrarily placed in the problem domain. The mesh-free smoothed particle hydrodynamics method has been adopted co obtain numerical solution of time domain Maxwell's curl equations. An explicit finite difference scheme has been employed for time integration. Details about the numerical treatment of electromagnetic vector fields components are discussed. Two case studies in one and in two dimensions are reported. In order to validate the new proposed methodology, named as Smoothed Particle ElectroMagnetics, a comparison with the standard finite difference time domain method results is performed. The intrinsic adaptive capability of the proposed method, has been exploited by introducing irregular particles distribution.