A robust envelope following method applicable to both non-autonomous and oscillatory circuits

  • Authors:
  • Ting Mei;Jaijeet Roychowdhury

  • Affiliations:
  • University of Minnesota, Twin Cities;University of Minnesota, Twin Cities

  • Venue:
  • Proceedings of the 43rd annual Design Automation Conference
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a novel envelope-following method which is uniformly applicable to both non-autonomous and oscillatory circuits. A key feature of our technique is the use of an efficient minimum least squares solution technique to solve an underdetermined envelope system directly. This leads to a general purpose approach which is much easier to solve than previous phase condition based envelope-following method, improving numerically robustness dramatically. We validate our method on a variety of autonomous and non-autonomous circuits, including a PLL in transition to lock. The new method provides speedups of 1-2 orders of magnitude over transient simulation, while obtaining results that are equally or more accurate.