On the throughput, capacity, and stability regions of random multiple access

  • Authors:
  • Jie Luo;Anthony Ephremides

  • Affiliations:
  • Electrical and Computer Engineering Department, University of Maryland, College Park, MD;Electrical and Computer Engineering Department, University of Maryland, College Park, MD

  • Venue:
  • IEEE/ACM Transactions on Networking (TON) - Special issue on networking and information theory
  • Year:
  • 2006

Quantified Score

Hi-index 0.06

Visualization

Abstract

This paper studies finite-terminal random multiple access over the standard multipacket reception (MPR) channel. We characterize the relations among the throughput region of random multiple access, the capacity region of multiple access without code synchronization, and the stability region of ALOHA protocol. In the first part of the paper, we show that if the MPR channel is standard, the throughput region of random multiple access is coordinate convex. We then study the information capacity region of multiple access without code synchronization and feedback. Inner and outer bounds to the capacity region are derived. We show that both the inner and the outer bounds converge asymptotically to the throughput region. In the second part of the paper, we study the stability region of finite-terminal ALOHA multiple access. For a class of packet arrival distributions, we demonstrate that the stationary distribution of the queues possesses positive and strong positive correlation properties, which consequently yield an outer bound to the stability region. We also show the major challenge in obtaining the closure of the stability region is due to the lack of sensitivity analysis results with respect to the transmission probabilities. Particularly, if a conjectured "sensitivity monotonicity" property held for the stationary distribution of the queues, then equivalence between the closure of the stability region and the throughput region follows as a direct consequence, irrespective of the packet arrival distributions.