Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems

  • Authors:
  • A. Buffa;T. J. R. Hughes;G. Sangalli

  • Affiliations:
  • -;-;-

  • Venue:
  • SIAM Journal on Numerical Analysis
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study a multiscale discontinuous Galerkin method introduced in [T. J. R. Hughes, G. Scovazzi, P. Bochev, and A. Buffa, Comput. Meth. Appl. Mech. Engrg., 195 (2006), pp. 2761-2787] that reduces the computational complexity of the discontinuous Galerkin method, seemingly without adversely affecting the quality of results. For a stabilized variant we are able to obtain the same error estimates for the convection-diffusion equation as for the usual discontinuous Galerkin method. We assess the stability of the unstabilized case numerically and find that the inf-sup constant is positive, bounded uniformly away from zero, and very similar to that for the usual discontinuous Galerkin method.