Learning Temporal Sequence Model from Partially Labeled Data

  • Authors:
  • Yifan Shi;Aaron Bobick;Irfan Essa

  • Affiliations:
  • Georgia Institute Of Technology, Atalanta;Georgia Institute Of Technology, Atalanta;Georgia Institute Of Technology, Atalanta

  • Venue:
  • CVPR '06 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.