High-Throughput Multicast Routing Metrics in Wireless Mesh Networks

  • Authors:
  • Sabyasachi Roy;Dimitrios Koutsonikolas;Saumitra Das;Y. Charlie Hu

  • Affiliations:
  • Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN

  • Venue:
  • ICDCS '06 Proceedings of the 26th IEEE International Conference on Distributed Computing Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.02

Visualization

Abstract

The stationary nature of nodes in a mesh network has shifted the main design goal of routing protocols from maintaining connectivity between source and destination nodes to finding high-throughput paths between them. In recent years, numerous link-quality-based routing metrics have been proposed for choosing high-throughput paths for unicast protocols. In this paper we study routing metrics for high-throughput tree or mesh construction in multicast protocols. We show that there is a fundamental difference between unicast and multicast routing in how data packets are transmitted at the link layer, and accordingly there is a difference in how the routing metrics for each of these primitives are designed. We adapt certain routing metrics for unicast for high-throughput multicast routing and propose news ones not previously used for high-throughput. We then study the performance improvement achieved by using different link-quality-based routing metrics via extensive simulation and experiments on a mesh network testbed, using ODMRP as a representative multicast protocol. Our testbed experiment results show that ODMRP enhanced with linkquality routing metrics can achieve up to 17.5% throughput improvement as compared to the original ODMRP.