Policy Analysis for Administrative Role Based Access Control

  • Authors:
  • Amit Sasturkar;Ping Yang;Scott D. Stoller;C. R. Ramakrishnan

  • Affiliations:
  • Stony Brook University, USA;Stony Brook University, USA;Stony Brook University, USA;Stony Brook University, USA

  • Venue:
  • CSFW '06 Proceedings of the 19th IEEE workshop on Computer Security Foundations
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Role-Based Access Control (RBAC) is a widely used model for expressing access control policies. In large organizations, the RBAC policy may be collectively managed by many administrators. Administrative RBAC (ARBAC) is a model for expressing the authority of administrators, thereby specifying how an organization's RBAC policy may change. Changes by one administrator may interact in unintended ways with changes by other administrators. Consequently, the effect of an ARBAC policy is hard to understand by simple inspection. In this paper, we consider the problem of analyzing ARBAC policies, in particular to determine reachability properties (e.g., whether a user can eventually be assigned to a role by a group of administrators) and availability properties (e.g., whether a user cannot be removed from a role by a group of administrators) implied by a policy. We first establish the connection between security policy analysis and planning in Artificial Intelligence. Based partly on this connection, we show that reachability analysis for ARBAC is PSPACE-complete. We also give algorithms and complexity results for reachability and related analysis problems for several categories of ARBAC policies, defined by simple restrictions on the policy language.