2005 Special issue: Place from time: Reconstructing position from a distributed representation of temporal context

  • Authors:
  • Marc W. Howard;Vaidehi S. Natu

  • Affiliations:
  • -;-

  • Venue:
  • Neural Networks - Special issue: Computational theories of the functions of the hippocampus
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The temporal context model (TCM) [Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269-299] was proposed to describe recency and associative effects observed in episodic recall. Episodic recall depends on an intact medial temporal lobe, a region of the brain that also supports a place code. Howard, Fotedar, Datey, and Hasselmo [Howard, M. W., Fotedar, M. S., Datey, A. V., & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112(1), 75-116] demonstrated that the leaky integrator that supports a gradually changing representation of temporal context in TCM is sufficient to describe properties of cells observed in ventromedial entorhinal cortex during spatial navigation if it is provided with input about the animal's current velocity. This representation of temporal context generates noisy place cells in the open field, unlike the clearly defined place cells observed in the hippocampus. Here we demonstrate that a reasonably accurate spatial representation can be extracted from temporal context with as few as eight cells, suggesting that the spatial precision observed in the place code in the hippocampus is not inconsistent with the input from a representation of temporal-spatial context in entorhinal cortex.