A stable queue-based adaptive controller for improving AQM performance

  • Authors:
  • Xiaolin Chang;Jogesh K. Muppala

  • Affiliations:
  • Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Active queue management (AQM) mechanisms are designed to provide better support for end-to-end congestion control mechanisms of transmission control protocol (TCP) in TCP/IP networks. This paper introduces a stable queue-based adaptive proportional-integral (Q-SAPI) controller for AQM and presents an implementation. The starting points of our approach are the recently developed fluid-flow modeling and control theoretic interpretation of the TCP/AQM dynamics, and the recently developed fixed-gain proportional-integral (PI) controller for AQM. Q-SAPI aims to improve the transient performance of the fixed-gain PI controller while maintaining its steady-state performance over a wide range of uncertainties in round-trip time (RTT) and the number of active TCP flows. The robustness of Q-SAPI is studied in detail, which provides guidelines for selecting control parameters. Through extensive simulations, we demonstrate the ability of Q-SAPI in controlling queue length in both transient and steady states. Q-SAPI achieves this by adapting the controller gains according to the queue length.