Saccadic Inhibition in Voluntary and Reflexive Saccades

  • Authors:
  • Eyal M. Reingold;Dave M. Stampe

  • Affiliations:
  • University of Toronto;University of Toronto

  • Venue:
  • Journal of Cognitive Neuroscience
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The present study investigated saccadic inhibition in both voluntary and stimulus-elicited saccades. Two experiments examined saccadic inhibition caused by an irrelevant flash occurring subsequent to target onset. In each trial, participants were required to perform a single saccade following the presentation of a black target on a gray background, 4° to the left or to the right of screen center. In some trials (flash trials), after a variable delay, a 33-msec flash was displayed at the top and bottom third of the monitor (these regions turned white). In all experimental conditions, histograms of flash-to-saccade latencies documented a decrease in saccadic frequency, forming a dip, time-locked to the flash and occurring as early as 60-70 msec following its onset. The fast latency of this effect strongly suggests a low-level, reflex-like, oculomotor effect, which was referred to as saccadic inhibition. A novel procedure was developed to allow comparisons of saccadic inhibition even across conditions, which in the absence of a flash (no-flash trials) produce dissimilar saccadic reaction times (SRTs) distributions. Experiment 1 examined the effects of the fixation stimulus on saccadic inhibition by contrasting three conditions: a gap condition (fixation stimulus disappeared 200 msec prior to target onset), a step condition (offset of the fixation stimulus was simultaneous with target onset), and an overlap condition (the fixation stimulus remained on for the duration of the trial). The overlap condition produced substantially stronger saccadic inhibition, relative to the gap and the step conditions. Experiment 2 contrasted the saccadic inhibition effect obtained for prosaccades (saccades aimed at the target) with the effect obtained for antisaccades (i.e., saccades aimed away from the same target). The onset of saccadic inhibition was earlier, and its magnitude was stronger, for antisaccades, relative to prosaccades. The plausibility that the superior colliculus is the neurophysiological locus of the saccadic inhibition effect was explored.