A Crosslinguistic PET Study of Tone Perception

  • Authors:
  • Jack Gandour;Donald Wong;Li Hsieh;Bret Weinzapfel;Diana Van Lancker;Gary D. Hutchins

  • Affiliations:
  • Purdue University;Indiana University School of Medicine;Purdue University;Indiana University School of Medicine;New York University;Indiana University School of Medicine

  • Venue:
  • Journal of Cognitive Neuroscience
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

In studies of pitch processing, a fundamental question is whether shared neural mechanisms at higher cortical levels are engaged for pitch perception of linguistic and nonlinguistic auditory stimuli. Positron emission tomography (PET) was used in a crosslinguistic study to compare pitch processing in native speakers of two tone languages (that is, languages in which variations in pitch patterns are used to distinguish lexical meaning), Chinese and Thai, with those of English, a nontone language. Five subjects from each language group were scanned under three active tasks (tone, pitch, and consonant) that required focused-attention, speeded-response, auditory discrimination judgments, and one passive baseline as silence. Subjects were instructed to judge pitch patterns of Thai lexical tones in the tone condition; pitch patterns of nonspeech stimuli in the pitch condition; syllable-initial consonants in the consonant condition. Analysis was carried out by paired-image subtraction. When comparing the tone to the pitch task, only the Thai group showed significant activation in the left frontal operculum. Activation of the left frontal operculum in the Thai group suggests that phonological processing of suprasegmental as well as segmental units occurs in the vicinity of Broca’s area. Baseline subtractions showed significant activation in the anterior insular region for the English and Chinese groups, but not Thai, providing further support for the existence of possibly two parallel, separate pathways projecting from the temporo-parietal to the frontal language area. More generally, these differential patterns of brain activation across language groups and tasks support the view that pitch patterns are processed at higher cortical levels in a top-down manner according to their linguistic function in a particular language.