An efficient VLSI architecture for motion compensation of AVS HDTV decoder

  • Authors:
  • Jun-Hao Zheng;Lei Deng;Peng Zhang;Don Xie

  • Affiliations:
  • Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China and Graduate University of Chinese Academy of Sciences, Beijing, P.R. China;Department of Computer Science, Harbin Institute of Technology, Harbin, P.R. China;Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China and Graduate University of Chinese Academy of Sciences, Beijing, P.R. China;Grandview Semiconductor (Beijing) Corporation, Beijing, P.R. China

  • Venue:
  • Journal of Computer Science and Technology - Special section on China AVS standard
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the part 2 of advanced Audio Video coding Standard (AVS-P2), many efficient coding tools are adopted in motion compensation, such as new motion vector prediction, symmetric matching, quarter precision interpolation, etc. However, these new features enormously increase the computational complexity and the memory bandwidth requirement, which make motion compensation a difficult component in the implementation of the AVS HDTV decoder. This paper proposes an efficient motion compensation architecture for AVS-P2 video standard up to the Level 6.2 of the Jizhun Profile. It has a macroblock-level pipelined structure which consists of MV predictor unit, reference fetch unit and pixel interpolation unit. The proposed architecture exploits the parallelism in the AVS motion compensation algorithm to accelerate the speed of operations and uses the dedicated design to optimize the memory access. And it has been integrated in a prototype chip which is fabricated with TSMC 0.18-µm CMOS technology, and the experimental results show that this architecture can achieve the real time AVS-P2 decoding for the HDTV 1080i (1920 × 1088 4 : 2 : 0 60field/s) video. The efficient design can work at the frequency of 148.5MHz and the total gate count is about 225K.