Very low complexity MPEG-2 to H.264 transcoding using machine learning

  • Authors:
  • Gerardo Fernández;Pedro Cuenca;Luis Orozco Barbosa;Hari Kalva

  • Affiliations:
  • Universidad de Castilla-La Mancha;Universidad de Castilla-La Mancha;Universidad de Castilla-La Mancha;Florida Atlantic University

  • Venue:
  • MULTIMEDIA '06 Proceedings of the 14th annual ACM international conference on Multimedia
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel macroblock mode decision algorithm for inter-frame prediction based on machine learning techniques to be used as part of a very low complexity MPEG-2 to H.264 video transcoder. Since coding mode decisions take up the most resources in video transcoding, a fast macro block (MB) mode estimation would lead to reduced complexity. The proposed approach is based on the hypothesis that MB coding mode decisions in H.264 video have a correlation with the distribution of the motion compensated residual in MPEG-2 video. We use machine learning tools to exploit the correlation and derive decision trees to classify the incoming MPEG-2 MBs into one of the 11 coding modes in H.264. The proposed approach reduces the H.264 MB mode computation process into a decision tree lookup with very low complexity. The proposed transcoder is compared with a reference transcoder comprised of a MPEG-2 decoder and an H.264 encoder. Our results show that the proposed transcoder reduces the H.264 encoding time by over 95% with negligible loss in quality and bitrate.