Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks

  • Authors:
  • Jia Tang;Xi Zhang

  • Affiliations:
  • Texas A&M University, College Station, TX;Texas A&M University, College Station, TX

  • Venue:
  • QShine '06 Proceedings of the 3rd international conference on Quality of service in heterogeneous wired/wireless networks
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a cross-layer-model based adaptive resource-allocation scheme for the diverse quality-of-service (QoS) guarantees over downlink mobile wireless networks. Our proposed scheme dynamically assigns power-levels and time-slots for heterogeneous real-time mobile users to satisfy the variation of statistical delay-bound QoS requirements. To achieve this goal, we apply effective capacity approach to derive the admission-control and power/time-slot allocation algorithms, guaranteeing the statistical delay-bound for heterogeneous mobile users. When designing such an algorithm, we study the impact of physical-layer issues such as adaptive power-control on the QoS provisioning performance. Through numerical and simulation results, we observe that the adaptive power adaptation has a significant impact on statistical QoS-guarantees. In addition, the analyses indicate that our proposed resource-allocation algorithms are shown to be able to efficiently support the diverse QoS requirements for various real-time mobile users over different wireless channels.