A hybrid learning-based model for on-line detection and analysis of control chart patterns

  • Authors:
  • Ruey-Shiang Guh

  • Affiliations:
  • Department of Industrial Management, National Formosa University, Huwei, Yunlin, Taiwan, ROC

  • Venue:
  • Computers and Industrial Engineering
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Unnatural control chart patterns (CCPs) are associated with a particular set of assignable causes for process variation. Therefore, effectively recognizing CCPs can substantially narrow down the set of possible causes to be examined, and accelerate the diagnostic search. In recent years, neural networks (NNs) have been successfully used to the CCP recognition task. The emphasis has been on the CCP detection rather than more detailed quantification of information of the CCP. Additionally, a common problem in existing NN-based CCP recognition methods is that of discriminating between various types of CCP that share similar features in a real-time recognition scheme. This work presents a hybrid learning-based model, which integrates NN and DT learning techniques, to detect and discriminate typical unnatural CCPs, while identifying the major parameter (such as the shift displacement or trend slope) and starting point of the CCP detected. The performance of the model was evaluated by simulation, and numerical and graphical results that demonstrate that the proposed model performs effectively and efficiently in on-line CCP recognition task are provided. Although this work considers the specific application of a real-time CCP recognition model for the individuals (X) chart, the proposed learning-based methodology can be applied to other control charts (such as the X-bar chart).