Number Plate Recognition Based on Support Vector Machines

  • Authors:
  • Lihong Zheng;Xiangjian He

  • Affiliations:
  • University of Technology, Australia;University of Technology, Australia

  • Venue:
  • AVSS '06 Proceedings of the IEEE International Conference on Video and Signal Based Surveillance
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Automatic number plate recognition method is required due to increasing traffic management. In this paper, we first briefly review some knowledge of Support Vector Machines (SVMs). Then a number plate recognition algorithm is proposed. This algorithm employs an SVM to recognize numbers. The algorithm starts from a collection of samples of numbers from number plates. Each character is recognized by an SVM, which is trained by some known samples in advance. In order to recognize a number plate correctly, all numbers are tested one by one using the trained model. The recognition results are achieved by finding the maximum value between the outputs of SVMs. In this paper, experimental results based on SVMs are given. From the experimental results, we can make the conclusion that SVM is bettr than others such as inductive learning-based number recognition