Collaborative Filtering for Multi-class Data Using Belief Nets Algorithms

  • Authors:
  • Xiaoyuan Su;Taghi M. Khoshgoftaar

  • Affiliations:
  • Florida Atlantic University, USA;Florida Atlantic University, USA

  • Venue:
  • ICTAI '06 Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

As one of the most successful recommender systems, collaborative filtering (CF) algorithms can deal with high sparsity and high requirement of scalability amongst other challenges. Bayesian belief nets (BNs), one of the most frequently used classifiers, can be used for CF tasks. Previous works of applying BNs to CF tasks were mainly focused on binary-class data, and used simple or basic Bayesian classifiers [1][2]. In this work, we apply advanced BNs models to CF tasks instead of simple ones, and work on real-world multi-class CF data instead of synthetic binary-class data. Empirical results show that with their ability to deal with incomplete data, extended logistic regression on naïve Bayes and tree augmented naïve Bayes (NB-ELR and TAN-ELR) models [3] consistently perform better than the state-of-the-art Pearson correlation-based CF algorithm. In addition, the ELR-optimized BNs CF models are robust in terms of the ability to make predictions, while the robustness of the Pearson correlation-based CF algorithm degrades as the sparseness of the data increases.