Biclustering Protein Complex Interactions with a Biclique Finding Algorithm

  • Authors:
  • Chris Ding;Ya Zhang;Tao Li;Stephen R. Holbrook

  • Affiliations:
  • Lawrence Berkeley Nat'l Lab, USA;University of Kansas, USA;Florida International University, USA;Lawrence Berkeley Nat'l Lab, USA

  • Venue:
  • ICDM '06 Proceedings of the Sixth International Conference on Data Mining
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L_1 constraint to L_p constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithmto solve the generalized Motzkin- Straus optimization problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.