Pull production cycle-time under varying product mixes

  • Authors:
  • Chakkaphan Athapornmongkon;Jochen Deuse;Chee Yew Wong

  • Affiliations:
  • Production Systems and Industrial Engineering, Dortmund, Germany;Production Systems and Industrial Engineering, Dortmund, Germany;Cranfield University School of Management, Cranfield, Bedfordshire, United Kingdom

  • Venue:
  • Proceedings of the 38th conference on Winter simulation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

To satisfy customer requirements and simultaneously fully utilize the production machines, there is a need to determine appropriate cycle time. Especially in pull systems with varying product mixes, accurate cycle time is even more crucial. Accurate cycle time also reduces the need for buffers. When the product mix varies, especially in a pull production system with parallel flow, determination of accurate cycle time becomes problematic. Hence this paper studies the relations between cycle times and product mixes in a parallel pull production system using discrete event simulation. Experiments with varying product mixes for parallel production systems are simulated. The simulation results show that optimal cycle time is inversely proportional to product mixes, when the product mix is 50:50 e.g. 120 sec. should be set to each parallel machine to obtain overall cycle time of 60 sec. However, when the mixes are more than 50:50, the proportional rule is not valid.