Expert systems for time-varying biomedical signals using eigenvector methods

  • Authors:
  • İnan Güler;Elif Derya íbeyli

  • Affiliations:
  • Department of Electronics and Computer Education, Faculty of Technical Education, Gazi University, 06500 Teknikokullar, Ankara, Turkey;Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB Ekonomi ve Teknoloji íniversitesi, 06530 Söğütözü, Ankara, Turkey

  • Venue:
  • Expert Systems with Applications: An International Journal
  • Year:
  • 2007

Quantified Score

Hi-index 12.05

Visualization

Abstract

In this paper, we present the expert systems for time-varying biomedical signals classification and determine their accuracies. The combined neural network (CNN), mixture of experts (ME), and modified mixture of experts (MME) were tested and benchmarked for their performance on the classification of the studied time-varying biomedical signals (ophthalmic arterial Doppler signals, internal carotid arterial Doppler signals and electroencephalogram signals). Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The inputs of these expert systems composed of diverse or composite features were chosen according to the network structures. The present study was conducted with the purpose of answering the question of whether the expert system with diverse features (MME) or composite feature (CNN, ME) improve the capability of classification of the time-varying biomedical signals. The purpose was to determine an optimum classification scheme for the problem and also to infer clues about the extracted features. Our research demonstrated that the power levels of power spectral density (PSD) estimations obtained by the eigenvector methods are the valuable features which are representing the time-varying biomedical signals and the CNN, ME, and MME trained on these features achieved high classification accuracies.