Efficient algorithm for placing a given number of base stations to cover a convex region

  • Authors:
  • Gautam K. Das;Sandip Das;Subhas C. Nandy;Bhabani P. Sinha

  • Affiliations:
  • Indian Statistical Institute, Kolkata, India;Indian Statistical Institute, Kolkata, India;Indian Statistical Institute, Kolkata, India;Indian Statistical Institute, Kolkata, India

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the context of mobile communication, an efficient algorithm for the base-station placement problem is developed in this paper. The objective is to place a given number of base-stations in a given convex region, and to assign range to each of them such that every point in the region is covered by at least one base-station, and the maximum range assigned is minimized. It is basically covering a region by a given number of equal radius circles where the objective is to minimize the radius. We develop an efficient algorithm for this problem using Voronoi diagram which works for covering a convex region of arbitrary shape. Existing results for this problem are available when the region is a square [K.J. Nurmela, P.R.J. Ostergard, Coveting a square with up to 30 equal circles, Research Report HUT-TCS-A62, Laboratory for Theoretical Computer Science, Helsinky University of Technology, 2000] and an equilateral triangle [K.J. Nurmela, Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles, Exp. Math. 9 (2) (2000)]. The minimum radius obtained by our method favorably compares with the results presented in [K.J. Nurmela, P.R.J. Ostergard, Covering a square with up to 30 equal circles, Research Report HUT-TCS-A62, Laboratory for Theoretical Computer Science, Helsinky University of Technology, 2000; K.J. Nurmela, Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles, Exp. Math. 9 (2) (2000)]. But the execution time of our algorithm is a fraction of a second, whereas the existing methods may even take about two weeks' time for a reasonable value of the number of circles (≥ 27) as reported in [K.J. Nurmela, P.R.J. Ostergard, Covering a square with up to 30 equal circles, Research Report HUT-TCS-A62, Laboratory for Theoretical Computer Science, Helsinky University of Technology, 2000; K.J. Nurmela, Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles, Exp. Math. 9 (2) (2000)].