A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics

  • Authors:
  • François B. Vialatte;Claire Martin;Rémi Dubois;Joëlle Haddad;Brigitte Quenet;Rémi Gervais;Gérard Dreyfus

  • Affiliations:
  • ícole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI-Paristech), Laboratoire d'ílectronique (UMR 7084 CNRS), 10 rue Vauquelin, 75005 Paris, France and ...;Institut des Sciences Cognitives (ISC), UMR 5015 CNRS Université Claude Bernard Lyon I 69675 Bron and IFR 19 Neurosciences, Lyon, France;ícole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI-Paristech), Laboratoire d'ílectronique (UMR 7084 CNRS), 10 rue Vauquelin, 75005 Paris, France;ícole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI-Paristech), Laboratoire d'ílectronique (UMR 7084 CNRS), 10 rue Vauquelin, 75005 Paris, France;ícole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI-Paristech), Laboratoire d'ílectronique (UMR 7084 CNRS), 10 rue Vauquelin, 75005 Paris, France;Institut des Sciences Cognitives (ISC), UMR 5015 CNRS Université Claude Bernard Lyon I 69675 Bron and IFR 19 Neurosciences, Lyon, France;ícole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI-Paristech), Laboratoire d'ílectronique (UMR 7084 CNRS), 10 rue Vauquelin, 75005 Paris, France

  • Venue:
  • Neural Networks
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The statistical analysis of experimentally recorded brain activity patterns may require comparisons between large sets of complex signals in order to find meaningful similarities and differences between signals with large variability. High-level representations such as time-frequency maps convey a wealth of useful information, but they involve a large number of parameters that make statistical investigations of many signals difficult at present. In this paper, we describe a method that performs drastic reduction in the complexity of time-frequency representations through a modelling of the maps by elementary functions. The method is validated on artificial signals and subsequently applied to electrophysiological brain signals (local field potential) recorded from the olfactory bulb of rats while they are trained to recognize odours. From hundreds of experimental recordings, reproducible time-frequency events are detected, and relevant features are extracted, which allow further information processing, such as automatic classification.