Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations

  • Authors:
  • Malte Schilling;Holk Cruse;Paolo Arena

  • Affiliations:
  • University of Bielefeld, Department of Biological Cybernetics and Theoretical Biology, P.O. Box 100131, 33501, Bielefeld, Germany;University of Bielefeld, Department of Biological Cybernetics and Theoretical Biology, P.O. Box 100131, 33501, Bielefeld, Germany;Universita degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, P.O. Box 100131, Viale A. Doria 6, 95125, Catania, Italy

  • Venue:
  • Biological Cybernetics
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The control of the legs of a walking hexapod is a complex problem as the legs have three joints each, resulting in a total of 18 degrees of freedom. We addressed this problem using a decentralized architecture termed Walknet, which consists of peripheral pattern generators being coordinated through influences acting mainly between neighbouring legs. Both, the coordinating influences and the local control modules (each acting only on one leg), are biologically inspired. This investigation shows that it is possible to adapt this approach to account for additional biological data by (1) changing the structure of the selector net in a biological plausible way (including force as an analog variable), (2) introducing a biologically motivated coordination influence for coactivation between legs and (3) adding a hypothetical influence between hind and front legs. This network of controllers has been tested using a dynamic simulation. It is able to describe (a) the behaviour of animals walking with one or two legs being amputated and (b) force oscillations that occur in a specific experimental situation, the standing legs of a walking animal.