Multi-scale visual analysis of trauma injury

  • Authors:
  • Celina Imielinska;Andrzej Przekwas;XG Tan

  • Affiliations:
  • Department of Biomedical Informatics, New York, NY and Department of Computer Science, Columbia University, New York, NY;CFD Research Corp., Huntsville, AL;CFD Research Corp., Huntsville, AL

  • Venue:
  • Information Visualization - Special issue on visual analysis of human dynamics
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We develop a multi-scale high-fidelity biomechanical and physiologically based modeling tools for trauma (ballistic/impact and blast) injury to brain, lung and spinal cord for resuscitation, treatment planning and design of personnel protection. Several approaches have been used to study blast and ballistic/ impact injuries. Dummy containing pressure sensors and synthetic phantoms of human organs have been used to study bomb blast and car crashes. Large animals like pigs also have been equipped with pressure sensors exposed to blast waves. But these methods do not provide anatomically and physiologically, full optimization of body protection design and require animal sacrifice. Anatomy and medical image-based high-fidelity computational modeling can be used to analyze injury mechanisms and to optimize the design of body protection. This paper presents novel approach of coupled computational fluid dynamics and computational structures dynamics to simulate fluid (air, cerebrospinal fluid)-solid (cranium, brain tissue) interaction during ballistic/blast impact. We propose a trauma injury simulation pipeline concept staring from anatomy and medical image-based high-fidelity 3D geometric modeling, extraction of tissue morphology, generation of computational grids, multi-scale biomechanical and physiological simulations, and data visualization.