Design and evaluation of practical coexistence management schemes for Bluetooth and IEEE 802.11b systems

  • Authors:
  • Michael Cho-Hoi Chek;Yu-Kwong Kwok

  • Affiliations:
  • Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bluetooth and IEEE 802.11b standards share the same unlicensed ISM (Industrial, Scientific, Medical) radio spectrum. As such, severe interference is inevitable and performance can be impaired significantly when heterogeneous devices using the two technologies come into close proximity. We propose a new approach called ISOAFH (Interference Source Oriented Adaptive Frequency Hopping) based on a memory and power efficient channel classification process, thereby reducing the time and space complexity of the mechanism. Through our MATLAB Simulink based simulations of various coexistence mechanisms, we find that the IEEE 802.15 Task Group 2 (TG2) AFH performance is sensitive to memory and power limitations, while ISOAFH is less sensitive to these constraints and can keep a lower channel collision rate. In view of the potential implementation difficulties for AFH based approaches, we also propose a time domain mechanism called ISOMDMS (ISO Master Delay MAC Scheduling).