A fully implicit numerical method for single-fluid resistive magnetohydrodynamics

  • Authors:
  • Daniel R. Reynolds;Ravi Samtaney;Carol S. Woodward

  • Affiliations:
  • Department of Mathematics, University of California at San Diego, La Jolla, San Diego, CA;Princeton Plasma Physics Lab, Princeton, NJ;Lawrence Livermore National Lab, Livermore, CA

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2006

Quantified Score

Hi-index 31.49

Visualization

Abstract

We present a nonlinearly implicit, conservative numerical method for integration of the single-fluid resistive MHD equations. The method uses a high-order spatial discretization that preserves the solenoidal property of the magnetic field. The fully coupled PDE system is solved implicitly in time, providing for increased interaction between physical processes as well as additional stability over explicit-time methods. A high-order adaptive time integration is employed, which in many cases enables time steps ranging from one to two orders of magnitude larger than those constrained by the explicit CFL condition. We apply the solution method to illustrative examples relevant to stiff magnetic fusion processes which challenge the efficiency of explicit methods. We provide computational evidence showing that for such problems the method is comparably accurate with explicit-time simulations, while providing a significant runtime improvement due to its increased temporal stability.