An analytical model for interval caching in interactive video servers

  • Authors:
  • Suneuy Kim;Chita R. Das

  • Affiliations:
  • San Jose State University, Department of Computer Science, San Jose, CA;Pennsylvania State University, Department of Computer Science & Engineering, University Park, PA

  • Venue:
  • Journal of Network and Computer Applications - Special issue: Network and information security: A computational intelligence approach
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Design of servers to meet the quality of service (QoS) requirements of interactive video-on-demand (VOD) systems is challenging. Recognizing the increasing use of these systems in a wide range of applications, as well as the stringent service demands expected from them, several design alternatives have been proposed to improve server throughput. A buffer management technique, called interval caching, is one such solution which exploits the temporal locality of requests to the same movie and tries to serve requests from the cache, thereby enhancing system throughput. In this paper, we present a comprehensive mathematical model for analyzing the performance of interactive video servers that use interval caching. The model takes into account the representative workload parameters of interactive servers employing interval caching and calculates the expected number of cached streams as an indication of the improvement in server capacity due to interval caching. Especially, user interactions, which sensitively affect the performance of interval caching, are realistically reflected in our model for an accurate analysis. A statistical admission control technique has also been developed based on this model. Using this model as a design tool, we apply the model to measure the impact of different VCR operations on client requests and rejection probability, as well as the effect of cache size.