A cross-layer architecture of wireless sensor networks for target tracking

  • Authors:
  • Liang Song;Dimitrios Hatzinakos

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada;Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose the Low Energy Self-Organizing Protocol (LESOP) for target tracking in dense wireless sensor networks. A cross-layer design perspective is adopted in LESOP for high protocol efficiency, where direct interactions between the Application layer and the Medium Access Control (MAC) layer are exploited. Unlike the classical Open Systems Interconnect (OSI) paradigm of communication networks, the Transport and Network layers are excluded in LESOP to simplify the protocol stack. A lightweight yet efficient target localization algorithm is proposed and implemented, and a Quality of Service (QoS) knob is found to control the tradeoff between the tracking error and the network energy consumption. Furthermore, LESOP serves as the first example in demonstrating the migration from the OSI paradigm to the Embedded Wireless Interconnect (EWI) architecture platform, a two-layer efficient architecture proposed here for wireless sensor networks.