Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids

  • Authors:
  • C. H. Tai;K. M. Liew;Y. Zhao

  • Affiliations:
  • DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore;Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

  • Venue:
  • Computers and Structures
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The newly developed immersed object method (IOM) [Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady incompressible viscous flows around moving rigid bodies using an immersed object method with overlapping grids. J Comput Phys 2005; 207(1): 151-72] is extended for 3D unsteady flow simulation with fluid-structure interaction (FSI), which is made possible by combining it with a parallel unstructured multigrid Navier-Stokes solver using a matrix-free implicit dual time stepping and finite volume method [Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multigrid method. In: The second M.I.T. conference on computational fluid and solid mechanics, June 17-20, MIT, Cambridge, MA 02139, USA, 2003; Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multigrid method, Special issue on ''Preconditioning methods: algorithms, applications and software environments. Comput Struct 2004; 82(28): 2425-36]. This uniquely combined method is then employed to perform detailed study of 3D unsteady flows with complex FSI. In the IOM, a body force term F is introduced into the momentum equations during the artificial compressibility (AC) sub-iterations so that a desired velocity distribution V"0 can be obtained on and within the object boundary, which needs not coincide with the grid, by adopting the direct forcing method. An object mesh is immersed into the flow domain to define the boundary of the object. The advantage of this is that bodies of almost arbitrary shapes can be added without grid restructuring, a procedure which is often time-consuming and computationally expensive. It has enabled us to perform complex and detailed 3D unsteady blood flow and blood-leaflets interaction in a mechanical heart valve (MHV) under physiological conditions.