Understanding congestion in IEEE 802.11b wireless networks

  • Authors:
  • Amit P. Jardosh;Krishna N. Ramachandran;Kevin C. Almeroth;Elizabeth M. Belding-Royer

  • Affiliations:
  • Department of Computer Science, University of California, Santa Barbara;Department of Computer Science, University of California, Santa Barbara;Department of Computer Science, University of California, Santa Barbara;Department of Computer Science, University of California, Santa Barbara

  • Venue:
  • IMC '05 Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The growing popularity of wireless networks has led to cases of heavy utilization and congestion. In heavily utilized wireless networks, the wireless portion of the network is a major performance bottleneck. Understanding the behavior of the wireless portion of such networks is critical to ensure their robust operation. This understanding can also help optimize network performance. In this paper, we use link layer information collected from an operational, large-scale, and heavily utilized IEEE 802.11b wireless network deployed at the 62nd Internet Engineering Task Force (IETF) meeting to study congestion in wireless networks. We motivate the use of channel busy-time as a direct measure of channel utilization and show how channel utilization along with network throughput and goodput can be used to define highly congested, moderately congested, and uncongested network states. Our study correlates network congestion and its effect on link-layer performance. Based on these correlations we find that (1) current rate adaptation implementations make scarce use of the 2 Mbps and 5.5 Mbps data rates, (2) the use of Request-to-Send/Clear-to-Send (RTS-CTS) prevents nodes from gaining fair access to a heavily congested channel, and (3) the use of rate adaptation, as a response to congestion, is detrimental to network performance.