Transmission Over Slowly Fading Channels Using Unreliable Quantized Feedback

  • Authors:
  • Siavash Ekbatani;Farzad Etemadi;Hamid Jafarkhani

  • Affiliations:
  • University of California, Irvine, CA;University of California, Irvine, CA;University of California, Irvine, CA

  • Venue:
  • DCC '07 Proceedings of the 2007 Data Compression Conference
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the problem of maximizing the expected rate over a slowly fading channel with quantized channel state information at the transmitter (CSIT). This problem has been recently studied in the literature assuming a noiseless feedback link. In this work, we consider a more realistic model, where the feedback link suffers from fading, as well as the limited power allocated to the feedback signals. Our scheme considers a finite-state model to capture the fading in the feedback link. We solve the rate maximization problem with different power control strategies at the transmitter. A channel optimized scaler quantizer (COSQ) is designed to incorporate feedback in our transmission scheme. Unlike the conventional COSQs where the objective is to reconstruct the source, our proposed quantizer is designed to optimize the expected rate of the forward link. For a high quality feedback channel, the proposed system performs close to the noiseless feedback case, while its performance converges to the nofeedback scenario as the feedback channel quality degrades.