Optimizing IPC Performance for Shared-Memory Multiprocessors

  • Authors:
  • Benjamin Gamsa;Orran Krieger;Michael Stumm

  • Affiliations:
  • University of Toronto, Canada;University of Toronto, Canada;University of Toronto, Canada

  • Venue:
  • ICPP '94 Proceedings of the 1994 International Conference on Parallel Processing - Volume 01
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

We assert that in order to perform well, a shared-memory multiprocessor inter-process communication (IPC) facility must avoid a) accessing any shared data, and b) acquiring any locks. In addition, such a multiprocessor IPC facility must preserve the locality and concurrency of the applications themselves so that the high performance of the IPC facility can be fully exploited. In this paper we describe the design and implementation of a new shared-memory multiprocessor IPC facility that in the common case internally requires no accesses to shared data and no locking. In addition, the model of IPC we support and our implementation ensure that local resources are made available to the server to allow it to exploit any locality and concurrency available in the service. To the best of our knowledge, this is the first IPC subsystem with these attributes. The performance data we present demonstrates that the end-to- end performance of our multiprocessor IPC facility is competitive with the fastest uniprocessor IPC times.