Operating system protection for fine-grained programs

  • Authors:
  • Trent Jaeger;Jochen Liedtke;Nayeem Islam

  • Affiliations:
  • IBM T.J. Watson Research Center, Hawthorne, NY;IBM T.J. Watson Research Center, Hawthorne, NY;IBM T.J. Watson Research Center, Hawthorne, NY

  • Venue:
  • SSYM'98 Proceedings of the 7th conference on USENIX Security Symposium - Volume 7
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an operating system-level security model for controlling fine-grained programs, such as downloaded executable content, and compare this security model's implementation to that of language-based security models. Language-based security has well-known limitations, such as the lack of complete mediation (e.g., for compiled programs or race condition attacks) and faulty self-protection (effective security is unproven). Operating system-level models are capable of complete mediation and self-protection, but some researchers argue that operating system-level security models are unlikely to supplant such language-based models because they lack portability and performance. In this paper, we detail an operating system-level security model built on the Lava Nucleus, a minimal, fast µ-kernel operating system. We show how it can enforce security requirements for fine-grained programs and show that its performance overhead (with the additional security) can be virtually negligible when compared to language-based models. Given the sufficient performance and security, the portability issue should become moot because other vendors will have to meet the higher security and performance expectations of their customers.