Dynamic Transition Refinement

  • Authors:
  • Michael Köhler;Heiko Rölke

  • Affiliations:
  • University of Hamburg, Department for Informatics;University of Hamburg, Department for Informatics

  • Venue:
  • Electronic Notes in Theoretical Computer Science (ENTCS)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Refinement of Petri nets is well suited for the hierarchical design of system models. It is used to represent a model at different levels of abstraction. Usually, refinement is a static concept. For many scenarios, however, it is desirable to have a more flexible form of refinement. For example in the context of service updates, e.g. version control in distributed systems, a mechanism for dynamic transition refinement is needed. The requirement of dynamic refinement at runtime is quite strong. Since we would like to redefine the system structure by itself, transition refinement cannot be implemented by a model transformation. Instead, an approach is needed which allows for dynamic net structures that can evolve as an effect of transitions firing. In previous work we introduced nets-within-nets as a formalism for the dynamic refinement of tokens. Here we consider an extension of nets-within-nets that uses special net tokens describing the refinement structure of transitions. Using this formalism it is possible to update refinements, introduce alternative refinements, etc. We present some formal properties of the extended formalism and introduce an example implementation for the tool Renew in the context of workflow modeling.