Improved shortest path algorithms for nearly acyclic directed graphs

  • Authors:
  • Lin Tian;Tadao Takaoka

  • Affiliations:
  • University of Canterbury, Christchurch, New Zealand;University of Canterbury, Christchurch, New Zealand

  • Venue:
  • ACSC '07 Proceedings of the thirtieth Australasian conference on Computer science - Volume 62
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents new algorithms for computing single source shortest paths (SSSPs) in a nearly acyclic directed graph G. The first part introduces higher-order decomposition. This decomposition is an extension of the technique of strongly connected component (sc-component) decomposition. The second part presents a new method for measuring acyclicity based on modifications to two existing methods. In the new method, we decompose the graph into a 1-dominator set, which is a set of acyclic subgraphs where each subgraph is dominated by one trigger vertex. Meanwhile we compute sc-components of a degenerated graph derived from triggers. Using this preprocessing, a new SSSP algorithm has O(m + rlogl) time complexity, where r is the size of the 1-dominator set, and l is the size of the largest sc-component. In the third part, we modify the concept of a 1-dominator set to that of a 1-2-dominator set. Each of acyclic subgraphs obtained by the 1-2-dominator decomposition are dominated by one or two trigger vertices cooperatively. Such subgraphs are potentially larger than those decomposed by the 1-dominator set. Thus fewer trigger vertices are needed to cover the graph.