Interference mitigation for coexistence of heterogeneous ultra-wideband systems

  • Authors:
  • Yongjing Zhang;Haitao Wu;Qian Zhang;Ping Zhang

  • Affiliations:
  • Beijing University of Posts and Telecommunications, China;Microsoft Research Asia, Beijing, China;Hong Kong University of Science and Technology, Hong Kong;Beijing University of Posts and Telecommunications, China

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Two ultra-wideband (UWB) specifications, that is, direct-sequence (DS) UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM) UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN). Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC) algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.