Rate-based active queue management for TCP flows over wired and wireless networks

  • Authors:
  • Jun Wang;Min Song

  • Affiliations:
  • Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA;Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Current active queue management (AQM) and TCP protocol are designed and tuned to work well on wired networks where packet loss is mainly due to network congestion. In wireless networks, however, communication links suffer from significant transmission bit errors and handoff failures. As a result, the performance of TCP flows is significantly degraded. To mitigate this problem, we analyze existing AQM schemes and propose a rate-based exponential AQM (REAQM) scheme. The proposed REAQM scheme uses the input rate as a primary metric and queue length as the secondary metric. The objectives of REAQM are to stabilize networks with low packet loss, low packet delay, and high link utilization regardless the dynamic of network conditions. We prove the global asymptotic stability of the equilibrium based on Lyapunov theory. Simulation results suggest that REAQM is capable of performing well for TCP flows over both wired and wireless networks, and has comparable implementation complexity as other AQM schemes.