Bounds for the capacity of wireless multihop networks imposed by topology and demand

  • Authors:
  • Alireza Keshavarz-Haddad;Rudolf H. Riedi

  • Affiliations:
  • Rice University, Houston, TX;Rice University, Houston, TX

  • Venue:
  • Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Existing work on the capacity of wireless networks predominantly considers homogeneous random networks with random work load. The most relevant bounds on the network capacity, e.g., take into account only the number of nodes and the area of the network. However, these bounds can significantly overestimate the achievable capacity in real world situations where network topology or traffic patterns often deviate from these simplistic assumptions. To provide analytically tractable yet asymptotically tight approximations of network capacity we propose a novel space-based approach. At the heart of our methodology lie simple functions which indicate the presence of active transmissions near any given location in the network and which constitute a tool well suited to untangle the interactions of simultaneous transmissions. We are able to provide capacity bounds which are tighter than the traditional ones and which involve topology and traffic patterns explicitly, e.g., through the length of Euclidean Minimum Spanning Tree, or through traffic demands between clusters of nodes. As an additional novelty our results cover unicast, multicast and broadcast and are asymptotically tight. Notably, our capacity bounds are simple enough to require only knowledge of node location, and there is no need for solving or optimizing multi-variable equations in our approach.