Frequency and 2D angle estimation based on a sparse uniform array of electromagnetic vector sensors

  • Authors:
  • Fei Ji;Sam Kwong

  • Affiliations:
  • School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China;Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

  • Venue:
  • EURASIP Journal on Applied Signal Processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an ESPRIT-based algorithm that yields extended-aperture two-dimensional (2D) arrival angle and carrier frequency estimates with a sparse uniform array of electromagnetic vector sensors. The ESPRIT-based frequency estimates are first achieved by using the temporal invariance structure out of the two time-delayed sets of data collected from vector sensor array. Each incident source's coarse direction of arrival (DOA) estimation is then obtained through the Poynting vector estimates (using a vector cross-product estimator). The frequency and coarse angle estimate results are used jointly to disambiguate the cyclic phase ambiguities in ESPRIT's eigenvalues when the intervector sensor spacing exceeds a half wavelength. Monte Carlo simulation results verified the effectiveness of the proposed method.