A portable MIMO testbed and selected channel measurements

  • Authors:
  • Paul Goud, Jr.;Robert Hang;Dmitri Truhachev;Christian Schlegel

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada;Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada;Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada;Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada

  • Venue:
  • EURASIP Journal on Applied Signal Processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

A portable 4 × 4 multiple-input multiple-output (MIMO) testbed that is based on field programmable gate arrays (FPGAs) and which operates in the 902-928 MHz industrial, scientific, and medical (ISM) band has been developed by the High Capacity Digital Communications (HCDC) Laboratory at the University of Alberta. We present a description of the HCDC testbed along with MIMO channel capacities that were derived from measurements taken with the HCDC testbed for three special locations: a narrow corridor, an athletics field that is surrounded by a metal fence, and a parkade. These locations are special because the channel capacities are different from what is expected for a typical indoor or outdoor channel. For two of the cases, a ray-tracing analysis has been performed and the simulated channel capacity values closely match the values calculated from the measured data. A ray-tracing analysis, however, requires accurate geometrical measurements and sophisticated modeling for each specific location. A MIMO testbed is ideal for quickly obtaining accurate channel capacity information.