Radio frequency interference suppression for landmine detection by quadrupole resonance

  • Authors:
  • Guoqing Liu;Yi Jiang;Hong Xiong;Jian Li;Geoffrey A. Barrall

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL;Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL;Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL;Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL;Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL

  • Venue:
  • EURASIP Journal on Applied Signal Processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. The RFIs are usually colored both spatially and temporally, and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlations of the RFIs to improve the TNT detection performance.