Experimental quantum cryptography

  • Authors:
  • Charles H. Bennett;François Bessette;Gilles Brassard;Louis Salvail;John Smolin

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • EUROCRYPT '90 Proceedings of the workshop on the theory and application of cryptographic techniques on Advances in cryptology
  • Year:
  • 1991

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe initial results from an apparatus and protocol designed to implement quantum public key distribution, by which two users, who share no secret information initially: 1) exchange a random quantum transmission, consisting of very faint flashes of polarized light; 2) by subsequent public discussion of the sent and received versions of this transmission estimate the extent of eavesdropping that might have taken place on it, and finally 3) if this estimate is small enough, can distill from the sent and received versions a smaller body of shared random information (key), which is certifiably secret in the sense that any third party's expected information on it is an exponentially small fraction of one bit. Because the system depends on the uncertainty principle of quantum physics, instead of usual mathematical assumptions such as the difficulty of factoring, it remains secure against an adversary with unlimited computing power.