Asynchronous distributed averaging on communication networks

  • Authors:
  • Mortada Mehyar;Demetri Spanos;John Pongsajapan;Steven H. Low;Richard M. Murray

  • Affiliations:
  • California Institute of Technology, Pasadena, CA;California Institute of Technology, Pasadena, CA;California Institute of Technology, Pasadena, CA;California Institute of Technology, Pasadena, CA;California Institute of Technology, Pasadena, CA

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

Distributed algorithms for averaging have attracted interest in the control and sensing literature. However, previous works have not addressed some practical concerns that will arise in actual implementations on packet-switched communication networks such as the Internet. In this paper, we present several implementable algorithms that are robust to asynchronism and dynamic topology changes. The algorithms are completely distributed and do not require any global coordination. In addition, they can be proven to converge under very general asynchronous timing assumptions. Our results are verified by both simulation and experiments on Planetlab, a real-world TCP/IP network. We also present some extensions that are likely to be useful in applications.